Static Electric Quadrupole Moments in the Ground State and $K = 4^-_1$ Bands in ¹⁶⁸Er

P. Thakur, M. S. Behra^a, R. Dogra^b, A. K. Bhati, and S. C. Bedi

Physics Department, Panjab University, Chandigarh - 160 014, India

^a Inter University Consortium - DAEF, Calcutta Centre, Calcutta - 700 091, India

^b SBS College of Engg. & Tech. Ferozepur -152001. India

Reprint requests to Dr. A. K. Bhati; E-mail: akbhati@pu.ac.in

Z. Naturforsch. **57 a,** 591–594 (2002); received April 2, 2002

Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions, Hiroshima, Japan, September 9-14, 2001.

The time differential perturbed angular correlation (TDPAC) technique has been used to study the nuclear quadrupole interactions of the first excited state of ground state rotational band (2, 80 keV, $T_{1/2} = 1.88$ ns) and the band head of the $K = 4^-_1$ band (4^- , 1094 keV, $T_{1/2} = 120$ ns) in the 168 Er nucleus of a polycrystalline Er host. At room temperature we obtained the electric quadrupole interaction frequencies $\omega_0(K=0) = 457(15)$ Mrad/s and $\omega_0(K=4) = 69(2)$ Mrad/s, respectively, for the 2^+ and 4^- isomeric states of 168 Er. The ratio of the spectroscopic quadrupole moments, i. e. Q_s (K=4)/ Q_s (K=0) = 0.69(3), is independent of any model approximation and the electric field gradient at 168 Er in the host metal.

Key words: Hyperfine Interactions; TDPAC Technique; Quadrupole Moments.